Metamath Proof Explorer


Theorem axhv0cl-zf

Description: Derive Axiom ax-hv0cl from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1
|- U = <. <. +h , .h >. , normh >.
axhil.2
|- U e. CHilOLD
Assertion axhv0cl-zf
|- 0h e. ~H

Proof

Step Hyp Ref Expression
1 axhil.1
 |-  U = <. <. +h , .h >. , normh >.
2 axhil.2
 |-  U e. CHilOLD
3 df-hba
 |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. )
4 1 fveq2i
 |-  ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. )
5 3 4 eqtr4i
 |-  ~H = ( BaseSet ` U )
6 df-h0v
 |-  0h = ( 0vec ` <. <. +h , .h >. , normh >. )
7 1 fveq2i
 |-  ( 0vec ` U ) = ( 0vec ` <. <. +h , .h >. , normh >. )
8 6 7 eqtr4i
 |-  0h = ( 0vec ` U )
9 5 8 hl0cl
 |-  ( U e. CHilOLD -> 0h e. ~H )
10 2 9 ax-mp
 |-  0h e. ~H