Description: Derive Axiom ax-hv0cl from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
axhil.2 | |- U e. CHilOLD |
||
Assertion | axhv0cl-zf | |- 0h e. ~H |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.1 | |- U = <. <. +h , .h >. , normh >. |
|
2 | axhil.2 | |- U e. CHilOLD |
|
3 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
4 | 1 | fveq2i | |- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
5 | 3 4 | eqtr4i | |- ~H = ( BaseSet ` U ) |
6 | df-h0v | |- 0h = ( 0vec ` <. <. +h , .h >. , normh >. ) |
|
7 | 1 | fveq2i | |- ( 0vec ` U ) = ( 0vec ` <. <. +h , .h >. , normh >. ) |
8 | 6 7 | eqtr4i | |- 0h = ( 0vec ` U ) |
9 | 5 8 | hl0cl | |- ( U e. CHilOLD -> 0h e. ~H ) |
10 | 2 9 | ax-mp | |- 0h e. ~H |