Metamath Proof Explorer


Theorem axhv0cl-zf

Description: Derive Axiom ax-hv0cl from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
axhil.2 𝑈 ∈ CHilOLD
Assertion axhv0cl-zf 0 ∈ ℋ

Proof

Step Hyp Ref Expression
1 axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 axhil.2 𝑈 ∈ CHilOLD
3 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 1 fveq2i ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 3 4 eqtr4i ℋ = ( BaseSet ‘ 𝑈 )
6 df-h0v 0 = ( 0vec ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
7 1 fveq2i ( 0vec𝑈 ) = ( 0vec ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
8 6 7 eqtr4i 0 = ( 0vec𝑈 )
9 5 8 hl0cl ( 𝑈 ∈ CHilOLD → 0 ∈ ℋ )
10 2 9 ax-mp 0 ∈ ℋ