Metamath Proof Explorer


Theorem axhvaddid-zf

Description: Derive Axiom ax-hvaddid from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U=+norm
axhil.2 UCHilOLD
Assertion axhvaddid-zf AA+0=A

Proof

Step Hyp Ref Expression
1 axhil.1 U=+norm
2 axhil.2 UCHilOLD
3 df-hba =BaseSet+norm
4 1 fveq2i BaseSetU=BaseSet+norm
5 3 4 eqtr4i =BaseSetU
6 2 hlnvi UNrmCVec
7 1 6 h2hva +=+vU
8 df-h0v 0=0vec+norm
9 1 fveq2i 0vecU=0vec+norm
10 8 9 eqtr4i 0=0vecU
11 5 7 10 hladdid UCHilOLDAA+0=A
12 2 11 mpan AA+0=A