Metamath Proof Explorer


Theorem axrep4

Description: A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994)

Ref Expression
Hypothesis axrep4.1 zφ
Assertion axrep4 xzyφy=zzyyzxxwφ

Proof

Step Hyp Ref Expression
1 axrep4.1 zφ
2 axrep3 xzyφy=zyyxxxwzφ
3 2 19.35i xzyφy=zxyyxxxwzφ
4 nfv zyx
5 nfv zxw
6 nfa1 zzφ
7 5 6 nfan zxwzφ
8 7 nfex zxxwzφ
9 4 8 nfbi zyxxxwzφ
10 9 nfal zyyxxxwzφ
11 nfv xyz
12 nfe1 xxxwφ
13 11 12 nfbi xyzxxwφ
14 13 nfal xyyzxxwφ
15 elequ2 x=zyxyz
16 1 19.3 zφφ
17 16 anbi2i xwzφxwφ
18 17 exbii xxwzφxxwφ
19 18 a1i x=zxxwzφxxwφ
20 15 19 bibi12d x=zyxxxwzφyzxxwφ
21 20 albidv x=zyyxxxwzφyyzxxwφ
22 10 14 21 cbvexv1 xyyxxxwzφzyyzxxwφ
23 3 22 sylib xzyφy=zzyyzxxwφ