Metamath Proof Explorer


Theorem axtgcont

Description: Axiom of Continuity. Axiom A11 of Schwabhauser p. 13. For more information see axtgcont1 . (Contributed by Thierry Arnoux, 16-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtgcont.1 φSP
axtgcont.2 φTP
axtgcont.3 φAP
axtgcont.4 φuSvTuAIv
Assertion axtgcont φbPxSyTbxIy

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtgcont.1 φSP
6 axtgcont.2 φTP
7 axtgcont.3 φAP
8 axtgcont.4 φuSvTuAIv
9 8 3expb φuSvTuAIv
10 9 ralrimivva φuSvTuAIv
11 simplr a=Ax=uy=vx=u
12 simpll a=Ax=uy=va=A
13 simpr a=Ax=uy=vy=v
14 12 13 oveq12d a=Ax=uy=vaIy=AIv
15 11 14 eleq12d a=Ax=uy=vxaIyuAIv
16 15 cbvraldva a=Ax=uyTxaIyvTuAIv
17 16 cbvraldva a=AxSyTxaIyuSvTuAIv
18 17 rspcev APuSvTuAIvaPxSyTxaIy
19 7 10 18 syl2anc φaPxSyTxaIy
20 1 2 3 4 5 6 axtgcont1 φaPxSyTxaIybPxSyTbxIy
21 19 20 mpd φbPxSyTbxIy