Metamath Proof Explorer


Theorem ballotlemrval

Description: Value of R . (Contributed by Thierry Arnoux, 14-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlemrval C O E R C = S C C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 fveq2 d = C S d = S C
12 id d = C d = C
13 11 12 imaeq12d d = C S d d = S C C
14 fveq2 c = d S c = S d
15 id c = d c = d
16 14 15 imaeq12d c = d S c c = S d d
17 16 cbvmptv c O E S c c = d O E S d d
18 10 17 eqtri R = d O E S d d
19 fvex S C V
20 imaexg S C V S C C V
21 19 20 ax-mp S C C V
22 13 18 21 fvmpt C O E R C = S C C