Metamath Proof Explorer


Theorem basendxltunifndx

Description: The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem . (Contributed by AV, 28-Oct-2024)

Ref Expression
Assertion basendxltunifndx Basendx<UnifSetndx

Proof

Step Hyp Ref Expression
1 1nn 1
2 3nn0 30
3 1nn0 10
4 1lt10 1<10
5 1 2 3 4 declti 1<13
6 basendx Basendx=1
7 unifndx UnifSetndx=13
8 5 6 7 3brtr4i Basendx<UnifSetndx