Metamath Proof Explorer


Theorem bccl2d

Description: Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses bccl2d.1 φN
bccl2d.2 φK0
bccl2d.3 φKN
Assertion bccl2d φ(NK)

Proof

Step Hyp Ref Expression
1 bccl2d.1 φN
2 bccl2d.2 φK0
3 bccl2d.3 φKN
4 2 nn0zd φK
5 2 nn0ge0d φ0K
6 4 5 3 3jca φK0KKN
7 1 nnzd φN
8 0z 0
9 elfz1 0NK0NK0KKN
10 8 9 mpan NK0NK0KKN
11 7 10 syl φK0NK0KKN
12 6 11 mpbird φK0N
13 bccl2 K0N(NK)
14 12 13 syl φ(NK)