Metamath Proof Explorer


Theorem bccl2d

Description: Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses bccl2d.1 φ N
bccl2d.2 φ K 0
bccl2d.3 φ K N
Assertion bccl2d φ ( N K)

Proof

Step Hyp Ref Expression
1 bccl2d.1 φ N
2 bccl2d.2 φ K 0
3 bccl2d.3 φ K N
4 2 nn0zd φ K
5 2 nn0ge0d φ 0 K
6 4 5 3 3jca φ K 0 K K N
7 1 nnzd φ N
8 0z 0
9 elfz1 0 N K 0 N K 0 K K N
10 8 9 mpan N K 0 N K 0 K K N
11 7 10 syl φ K 0 N K 0 K K N
12 6 11 mpbird φ K 0 N
13 bccl2 K 0 N ( N K)
14 12 13 syl φ ( N K)