| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccl2d.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
bccl2d.2 |
|- ( ph -> K e. NN0 ) |
| 3 |
|
bccl2d.3 |
|- ( ph -> K <_ N ) |
| 4 |
2
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 5 |
2
|
nn0ge0d |
|- ( ph -> 0 <_ K ) |
| 6 |
4 5 3
|
3jca |
|- ( ph -> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) |
| 7 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 8 |
|
0z |
|- 0 e. ZZ |
| 9 |
|
elfz1 |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) ) |
| 10 |
8 9
|
mpan |
|- ( N e. ZZ -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) ) |
| 11 |
7 10
|
syl |
|- ( ph -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) ) |
| 12 |
6 11
|
mpbird |
|- ( ph -> K e. ( 0 ... N ) ) |
| 13 |
|
bccl2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. NN ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( N _C K ) e. NN ) |