Metamath Proof Explorer


Theorem bccl2d

Description: Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses bccl2d.1
|- ( ph -> N e. NN )
bccl2d.2
|- ( ph -> K e. NN0 )
bccl2d.3
|- ( ph -> K <_ N )
Assertion bccl2d
|- ( ph -> ( N _C K ) e. NN )

Proof

Step Hyp Ref Expression
1 bccl2d.1
 |-  ( ph -> N e. NN )
2 bccl2d.2
 |-  ( ph -> K e. NN0 )
3 bccl2d.3
 |-  ( ph -> K <_ N )
4 2 nn0zd
 |-  ( ph -> K e. ZZ )
5 2 nn0ge0d
 |-  ( ph -> 0 <_ K )
6 4 5 3 3jca
 |-  ( ph -> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) )
7 1 nnzd
 |-  ( ph -> N e. ZZ )
8 0z
 |-  0 e. ZZ
9 elfz1
 |-  ( ( 0 e. ZZ /\ N e. ZZ ) -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) )
10 8 9 mpan
 |-  ( N e. ZZ -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) )
11 7 10 syl
 |-  ( ph -> ( K e. ( 0 ... N ) <-> ( K e. ZZ /\ 0 <_ K /\ K <_ N ) ) )
12 6 11 mpbird
 |-  ( ph -> K e. ( 0 ... N ) )
13 bccl2
 |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. NN )
14 12 13 syl
 |-  ( ph -> ( N _C K ) e. NN )