Metamath Proof Explorer


Theorem bdayle

Description: A condition for bounding a birthday above. (Contributed by Scott Fenton, 22-Nov-2025)

Ref Expression
Assertion bdayle X No Ord O bday X O y Old bday X bday y O

Proof

Step Hyp Ref Expression
1 bdayiun X No bday X = y Old bday X suc bday y
2 1 sseq1d X No bday X O y Old bday X suc bday y O
3 iunss y Old bday X suc bday y O y Old bday X suc bday y O
4 fvex bday y V
5 ordelsuc bday y V Ord O bday y O suc bday y O
6 4 5 mpan Ord O bday y O suc bday y O
7 6 ralbidv Ord O y Old bday X bday y O y Old bday X suc bday y O
8 3 7 bitr4id Ord O y Old bday X suc bday y O y Old bday X bday y O
9 2 8 sylan9bb X No Ord O bday X O y Old bday X bday y O