Metamath Proof Explorer
		
		
		
		Description:  Deduction associated with biadani .  Add a conjunction to an
       equivalence.  (Contributed by Thierry Arnoux, 16-Jun-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | biadanid.1 |  | 
					
						|  |  | biadanid.2 |  | 
				
					|  | Assertion | biadanid |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | biadanid.1 |  | 
						
							| 2 |  | biadanid.2 |  | 
						
							| 3 | 2 | biimpa |  | 
						
							| 4 | 3 | an32s |  | 
						
							| 5 | 1 4 | mpdan |  | 
						
							| 6 | 1 5 | jca |  | 
						
							| 7 | 2 | biimpar |  | 
						
							| 8 | 7 | anasss |  | 
						
							| 9 | 6 8 | impbida |  |