Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Igor Ieskov
binom2d
Next ⟩
cu3addd
Metamath Proof Explorer
Ascii
Unicode
Theorem
binom2d
Description:
Deduction form of binom2.
(Contributed by
Igor Ieskov
, 14-Dec-2023)
Ref
Expression
Hypotheses
binom2d.1
⊢
φ
→
A
∈
ℂ
binom2d.2
⊢
φ
→
B
∈
ℂ
Assertion
binom2d
⊢
φ
→
A
+
B
2
=
A
2
+
2
⁢
A
⁢
B
+
B
2
Proof
Step
Hyp
Ref
Expression
1
binom2d.1
⊢
φ
→
A
∈
ℂ
2
binom2d.2
⊢
φ
→
B
∈
ℂ
3
binom2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
2
=
A
2
+
2
⁢
A
⁢
B
+
B
2
4
1
2
3
syl2anc
⊢
φ
→
A
+
B
2
=
A
2
+
2
⁢
A
⁢
B
+
B
2