Metamath Proof Explorer


Theorem bitr2i

Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypotheses bitr2i.1 φ ψ
bitr2i.2 ψ χ
Assertion bitr2i χ φ

Proof

Step Hyp Ref Expression
1 bitr2i.1 φ ψ
2 bitr2i.2 ψ χ
3 1 2 bitri φ χ
4 3 bicomi χ φ