Metamath Proof Explorer


Theorem bj-2upln0

Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-2upln0 A B

Proof

Step Hyp Ref Expression
1 df-bj-2upl A B = A 1 𝑜 × tag B
2 bj-1upln0 A
3 0pss A A
4 2 3 mpbir A
5 ssun1 A A 1 𝑜 × tag B
6 psssstr A A A 1 𝑜 × tag B A 1 𝑜 × tag B
7 4 5 6 mp2an A 1 𝑜 × tag B
8 0pss A 1 𝑜 × tag B A 1 𝑜 × tag B
9 7 8 mpbi A 1 𝑜 × tag B
10 1 9 eqnetri A B