Metamath Proof Explorer


Theorem bj-2upln0

Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-2upln0 AB

Proof

Step Hyp Ref Expression
1 df-bj-2upl AB=A1𝑜×tagB
2 bj-1upln0 A
3 0pss AA
4 2 3 mpbir A
5 ssun1 AA1𝑜×tagB
6 psssstr AAA1𝑜×tagBA1𝑜×tagB
7 4 5 6 mp2an A1𝑜×tagB
8 0pss A1𝑜×tagBA1𝑜×tagB
9 7 8 mpbi A1𝑜×tagB
10 1 9 eqnetri AB