Metamath Proof Explorer


Theorem bj-axc10

Description: Alternate proof of axc10 . Shorter. One can prove a version with DV ( x , y ) without ax-13 , by using ax6ev instead of ax6e . (Contributed by BJ, 31-Mar-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc10 x x = y x φ φ

Proof

Step Hyp Ref Expression
1 ax6e x x = y
2 exim x x = y x φ x x = y x x φ
3 1 2 mpi x x = y x φ x x φ
4 axc7e x x φ φ
5 3 4 syl x x = y x φ φ