Metamath Proof Explorer


Theorem bj-axc10

Description: Alternate proof of axc10 . Shorter. One can prove a version with DV ( x , y ) without ax-13 , by using ax6ev instead of ax6e . (Contributed by BJ, 31-Mar-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc10 ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 ax6e 𝑥 𝑥 = 𝑦
2 exim ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥𝑥 𝜑 ) )
3 1 2 mpi ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) → ∃ 𝑥𝑥 𝜑 )
4 axc7e ( ∃ 𝑥𝑥 𝜑𝜑 )
5 3 4 syl ( ∀ 𝑥 ( 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) → 𝜑 )