Metamath Proof Explorer


Theorem bj-axc10

Description: Alternate proof of axc10 . Shorter. One can prove a version with DV ( x , y ) without ax-13 , by using ax6ev instead of ax6e . (Contributed by BJ, 31-Mar-2021) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc10
|- ( A. x ( x = y -> A. x ph ) -> ph )

Proof

Step Hyp Ref Expression
1 ax6e
 |-  E. x x = y
2 exim
 |-  ( A. x ( x = y -> A. x ph ) -> ( E. x x = y -> E. x A. x ph ) )
3 1 2 mpi
 |-  ( A. x ( x = y -> A. x ph ) -> E. x A. x ph )
4 axc7e
 |-  ( E. x A. x ph -> ph )
5 3 4 syl
 |-  ( A. x ( x = y -> A. x ph ) -> ph )