Metamath Proof Explorer


Theorem bj-equsal1t

Description: Duplication of wl-equsal1t , with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom is also interesting. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-equsal1t x φ x x = y φ φ

Proof

Step Hyp Ref Expression
1 bj-alequex x x = y φ x φ
2 19.9t x φ x φ φ
3 1 2 syl5ib x φ x x = y φ φ
4 nf5r x φ φ x φ
5 ala1 x φ x x = y φ
6 4 5 syl6 x φ φ x x = y φ
7 3 6 impbid x φ x x = y φ φ