Description: Shorter proof of inrab . (Contributed by BJ, 21-Apr-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-inrab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inrab | ||
2 | nfv | ||
3 | inidm | ||
4 | 3 | a1i | |
5 | 2 4 | bj-rabeqd | |
6 | 5 | mptru | |
7 | 1 6 | eqtri |