Metamath Proof Explorer


Theorem bj-inrab2

Description: Shorter proof of inrab . (Contributed by BJ, 21-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-inrab2 ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 bj-inrab ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = { 𝑥 ∈ ( 𝐴𝐴 ) ∣ ( 𝜑𝜓 ) }
2 nfv 𝑥
3 inidm ( 𝐴𝐴 ) = 𝐴
4 3 a1i ( ⊤ → ( 𝐴𝐴 ) = 𝐴 )
5 2 4 bj-rabeqd ( ⊤ → { 𝑥 ∈ ( 𝐴𝐴 ) ∣ ( 𝜑𝜓 ) } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) } )
6 5 mptru { 𝑥 ∈ ( 𝐴𝐴 ) ∣ ( 𝜑𝜓 ) } = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }
7 1 6 eqtri ( { 𝑥𝐴𝜑 } ∩ { 𝑥𝐴𝜓 } ) = { 𝑥𝐴 ∣ ( 𝜑𝜓 ) }