Metamath Proof Explorer


Theorem bj-inrab2

Description: Shorter proof of inrab . (Contributed by BJ, 21-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-inrab2 xA|φxA|ψ=xA|φψ

Proof

Step Hyp Ref Expression
1 bj-inrab xA|φxA|ψ=xAA|φψ
2 nfv x
3 inidm AA=A
4 3 a1i AA=A
5 2 4 rabeqd xAA|φψ=xA|φψ
6 5 mptru xAA|φψ=xA|φψ
7 1 6 eqtri xA|φxA|ψ=xA|φψ