Metamath Proof Explorer


Theorem bj-inrab3

Description: Generalization of dfrab3ss , which it may shorten. (Contributed by BJ, 21-Apr-2019) (Revised by OpenAI, 7-Jul-2020)

Ref Expression
Assertion bj-inrab3 AxB|φ=xA|φB

Proof

Step Hyp Ref Expression
1 dfrab3 xB|φ=Bx|φ
2 1 ineq2i AxB|φ=ABx|φ
3 dfrab3 xA|φ=Ax|φ
4 3 ineq2i BxA|φ=BAx|φ
5 incom xA|φB=BxA|φ
6 in12 ABx|φ=BAx|φ
7 4 5 6 3eqtr4i xA|φB=ABx|φ
8 2 7 eqtr4i AxB|φ=xA|φB