Metamath Proof Explorer


Theorem bj-mpomptALT

Description: Alternate proof of mpompt . (Contributed by BJ, 30-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis bj-mpomptALT.1 z=xyC=D
Assertion bj-mpomptALT zA×BC=xA,yBD

Proof

Step Hyp Ref Expression
1 bj-mpomptALT.1 z=xyC=D
2 elxp2 zA×BxAyBz=xy
3 2 anbi1i zA×Bt=CxAyBz=xyt=C
4 r19.41v xAyBz=xyt=CxAyBz=xyt=C
5 r19.41v yBz=xyt=CyBz=xyt=C
6 1 eqeq2d z=xyt=Ct=D
7 6 pm5.32i z=xyt=Cz=xyt=D
8 7 rexbii yBz=xyt=CyBz=xyt=D
9 5 8 bitr3i yBz=xyt=CyBz=xyt=D
10 9 rexbii xAyBz=xyt=CxAyBz=xyt=D
11 3 4 10 3bitr2i zA×Bt=CxAyBz=xyt=D
12 11 opabbii zt|zA×Bt=C=zt|xAyBz=xyt=D
13 df-mpt zA×BC=zt|zA×Bt=C
14 bj-dfmpoa xA,yBD=zt|xAyBz=xyt=D
15 12 13 14 3eqtr4i zA×BC=xA,yBD