Metamath Proof Explorer


Theorem bj-mpomptALT

Description: Alternate proof of mpompt . (Contributed by BJ, 30-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis bj-mpomptALT.1
|- ( z = <. x , y >. -> C = D )
Assertion bj-mpomptALT
|- ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D )

Proof

Step Hyp Ref Expression
1 bj-mpomptALT.1
 |-  ( z = <. x , y >. -> C = D )
2 elxp2
 |-  ( z e. ( A X. B ) <-> E. x e. A E. y e. B z = <. x , y >. )
3 2 anbi1i
 |-  ( ( z e. ( A X. B ) /\ t = C ) <-> ( E. x e. A E. y e. B z = <. x , y >. /\ t = C ) )
4 r19.41v
 |-  ( E. x e. A ( E. y e. B z = <. x , y >. /\ t = C ) <-> ( E. x e. A E. y e. B z = <. x , y >. /\ t = C ) )
5 r19.41v
 |-  ( E. y e. B ( z = <. x , y >. /\ t = C ) <-> ( E. y e. B z = <. x , y >. /\ t = C ) )
6 1 eqeq2d
 |-  ( z = <. x , y >. -> ( t = C <-> t = D ) )
7 6 pm5.32i
 |-  ( ( z = <. x , y >. /\ t = C ) <-> ( z = <. x , y >. /\ t = D ) )
8 7 rexbii
 |-  ( E. y e. B ( z = <. x , y >. /\ t = C ) <-> E. y e. B ( z = <. x , y >. /\ t = D ) )
9 5 8 bitr3i
 |-  ( ( E. y e. B z = <. x , y >. /\ t = C ) <-> E. y e. B ( z = <. x , y >. /\ t = D ) )
10 9 rexbii
 |-  ( E. x e. A ( E. y e. B z = <. x , y >. /\ t = C ) <-> E. x e. A E. y e. B ( z = <. x , y >. /\ t = D ) )
11 3 4 10 3bitr2i
 |-  ( ( z e. ( A X. B ) /\ t = C ) <-> E. x e. A E. y e. B ( z = <. x , y >. /\ t = D ) )
12 11 opabbii
 |-  { <. z , t >. | ( z e. ( A X. B ) /\ t = C ) } = { <. z , t >. | E. x e. A E. y e. B ( z = <. x , y >. /\ t = D ) }
13 df-mpt
 |-  ( z e. ( A X. B ) |-> C ) = { <. z , t >. | ( z e. ( A X. B ) /\ t = C ) }
14 bj-dfmpoa
 |-  ( x e. A , y e. B |-> D ) = { <. z , t >. | E. x e. A E. y e. B ( z = <. x , y >. /\ t = D ) }
15 12 13 14 3eqtr4i
 |-  ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D )