Metamath Proof Explorer


Theorem bj-mpomptALT

Description: Alternate proof of mpompt . (Contributed by BJ, 30-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis bj-mpomptALT.1 z = x y C = D
Assertion bj-mpomptALT z A × B C = x A , y B D

Proof

Step Hyp Ref Expression
1 bj-mpomptALT.1 z = x y C = D
2 elxp2 z A × B x A y B z = x y
3 2 anbi1i z A × B t = C x A y B z = x y t = C
4 r19.41v x A y B z = x y t = C x A y B z = x y t = C
5 r19.41v y B z = x y t = C y B z = x y t = C
6 1 eqeq2d z = x y t = C t = D
7 6 pm5.32i z = x y t = C z = x y t = D
8 7 rexbii y B z = x y t = C y B z = x y t = D
9 5 8 bitr3i y B z = x y t = C y B z = x y t = D
10 9 rexbii x A y B z = x y t = C x A y B z = x y t = D
11 3 4 10 3bitr2i z A × B t = C x A y B z = x y t = D
12 11 opabbii z t | z A × B t = C = z t | x A y B z = x y t = D
13 df-mpt z A × B C = z t | z A × B t = C
14 bj-dfmpoa x A , y B D = z t | x A y B z = x y t = D
15 12 13 14 3eqtr4i z A × B C = x A , y B D