Metamath Proof Explorer


Theorem bj-nnfimd

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023)

Ref Expression
Hypotheses bj-nnfimd.1 φℲ'xψ
bj-nnfimd.2 φℲ'xχ
Assertion bj-nnfimd φℲ'xψχ

Proof

Step Hyp Ref Expression
1 bj-nnfimd.1 φℲ'xψ
2 bj-nnfimd.2 φℲ'xχ
3 bj-nnfim Ⅎ'xψℲ'xχℲ'xψχ
4 1 2 3 syl2anc φℲ'xψχ