Metamath Proof Explorer


Theorem bj-ralvw

Description: A weak version of ralv not using ax-ext (nor df-cleq , df-clel , df-v ), and only core FOL axioms. See also bj-rexvw . The analogues for reuv and rmov are not proved. (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-ralvw.1 ψ
Assertion bj-ralvw x y | ψ φ x φ

Proof

Step Hyp Ref Expression
1 bj-ralvw.1 ψ
2 df-ral x y | ψ φ x x y | ψ φ
3 1 vexw x y | ψ
4 3 a1bi φ x y | ψ φ
5 4 albii x φ x x y | ψ φ
6 2 5 bitr4i x y | ψ φ x φ