Metamath Proof Explorer


Theorem bj-rcleq

Description: Relative version of dfcleq . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-rcleq VA=VBxVxAxB

Proof

Step Hyp Ref Expression
1 nfcv _xA
2 nfcv _xB
3 nfcv _xV
4 1 2 3 bj-rcleqf VA=VBxVxAxB