Metamath Proof Explorer


Theorem bj-rcleq

Description: Relative version of dfcleq . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-rcleq ( ( 𝑉𝐴 ) = ( 𝑉𝐵 ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐴
2 nfcv 𝑥 𝐵
3 nfcv 𝑥 𝑉
4 1 2 3 bj-rcleqf ( ( 𝑉𝐴 ) = ( 𝑉𝐵 ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝑥𝐵 ) )