Description: Relative version of dfcleq . (Contributed by BJ, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-rcleq | ⊢ ( ( 𝑉 ∩ 𝐴 ) = ( 𝑉 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
2 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
3 | nfcv | ⊢ Ⅎ 𝑥 𝑉 | |
4 | 1 2 3 | bj-rcleqf | ⊢ ( ( 𝑉 ∩ 𝐴 ) = ( 𝑉 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |