| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-rcleqf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
bj-rcleqf.b |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
bj-rcleqf.v |
⊢ Ⅎ 𝑥 𝑉 |
| 4 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑉 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) ) |
| 5 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑉 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) |
| 6 |
4 5
|
bibi12i |
⊢ ( ( 𝑥 ∈ ( 𝑉 ∩ 𝐴 ) ↔ 𝑥 ∈ ( 𝑉 ∩ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 7 |
|
pm5.32 |
⊢ ( ( 𝑥 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 8 |
6 7
|
bitr4i |
⊢ ( ( 𝑥 ∈ ( 𝑉 ∩ 𝐴 ) ↔ 𝑥 ∈ ( 𝑉 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝑉 ∩ 𝐴 ) ↔ 𝑥 ∈ ( 𝑉 ∩ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 10 |
3 1
|
nfin |
⊢ Ⅎ 𝑥 ( 𝑉 ∩ 𝐴 ) |
| 11 |
3 2
|
nfin |
⊢ Ⅎ 𝑥 ( 𝑉 ∩ 𝐵 ) |
| 12 |
10 11
|
cleqf |
⊢ ( ( 𝑉 ∩ 𝐴 ) = ( 𝑉 ∩ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝑉 ∩ 𝐴 ) ↔ 𝑥 ∈ ( 𝑉 ∩ 𝐵 ) ) ) |
| 13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 14 |
9 12 13
|
3bitr4i |
⊢ ( ( 𝑉 ∩ 𝐴 ) = ( 𝑉 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |