Metamath Proof Explorer


Theorem bj-rcleqf

Description: Relative version of cleqf . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Hypotheses bj-rcleqf.a 𝑥 𝐴
bj-rcleqf.b 𝑥 𝐵
bj-rcleqf.v 𝑥 𝑉
Assertion bj-rcleqf ( ( 𝑉𝐴 ) = ( 𝑉𝐵 ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 bj-rcleqf.a 𝑥 𝐴
2 bj-rcleqf.b 𝑥 𝐵
3 bj-rcleqf.v 𝑥 𝑉
4 elin ( 𝑥 ∈ ( 𝑉𝐴 ) ↔ ( 𝑥𝑉𝑥𝐴 ) )
5 elin ( 𝑥 ∈ ( 𝑉𝐵 ) ↔ ( 𝑥𝑉𝑥𝐵 ) )
6 4 5 bibi12i ( ( 𝑥 ∈ ( 𝑉𝐴 ) ↔ 𝑥 ∈ ( 𝑉𝐵 ) ) ↔ ( ( 𝑥𝑉𝑥𝐴 ) ↔ ( 𝑥𝑉𝑥𝐵 ) ) )
7 pm5.32 ( ( 𝑥𝑉 → ( 𝑥𝐴𝑥𝐵 ) ) ↔ ( ( 𝑥𝑉𝑥𝐴 ) ↔ ( 𝑥𝑉𝑥𝐵 ) ) )
8 6 7 bitr4i ( ( 𝑥 ∈ ( 𝑉𝐴 ) ↔ 𝑥 ∈ ( 𝑉𝐵 ) ) ↔ ( 𝑥𝑉 → ( 𝑥𝐴𝑥𝐵 ) ) )
9 8 albii ( ∀ 𝑥 ( 𝑥 ∈ ( 𝑉𝐴 ) ↔ 𝑥 ∈ ( 𝑉𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝑥𝐴𝑥𝐵 ) ) )
10 3 1 nfin 𝑥 ( 𝑉𝐴 )
11 3 2 nfin 𝑥 ( 𝑉𝐵 )
12 10 11 cleqf ( ( 𝑉𝐴 ) = ( 𝑉𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝑉𝐴 ) ↔ 𝑥 ∈ ( 𝑉𝐵 ) ) )
13 df-ral ( ∀ 𝑥𝑉 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝑉 → ( 𝑥𝐴𝑥𝐵 ) ) )
14 9 12 13 3bitr4i ( ( 𝑉𝐴 ) = ( 𝑉𝐵 ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝑥𝐵 ) )