Metamath Proof Explorer


Theorem bj-rcleqf

Description: Relative version of cleqf . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Hypotheses bj-rcleqf.a _xA
bj-rcleqf.b _xB
bj-rcleqf.v _xV
Assertion bj-rcleqf VA=VBxVxAxB

Proof

Step Hyp Ref Expression
1 bj-rcleqf.a _xA
2 bj-rcleqf.b _xB
3 bj-rcleqf.v _xV
4 elin xVAxVxA
5 elin xVBxVxB
6 4 5 bibi12i xVAxVBxVxAxVxB
7 pm5.32 xVxAxBxVxAxVxB
8 6 7 bitr4i xVAxVBxVxAxB
9 8 albii xxVAxVBxxVxAxB
10 3 1 nfin _xVA
11 3 2 nfin _xVB
12 10 11 cleqf VA=VBxxVAxVB
13 df-ral xVxAxBxxVxAxB
14 9 12 13 3bitr4i VA=VBxVxAxB