Metamath Proof Explorer


Theorem bj-reabeq

Description: Relative form of abeq2 . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-reabeq ( ( 𝑉𝐴 ) = { 𝑥𝑉𝜑 } ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 dfrab3 { 𝑥𝑉𝜑 } = ( 𝑉 ∩ { 𝑥𝜑 } )
2 1 eqeq2i ( ( 𝑉𝐴 ) = { 𝑥𝑉𝜑 } ↔ ( 𝑉𝐴 ) = ( 𝑉 ∩ { 𝑥𝜑 } ) )
3 nfcv 𝑥 𝐴
4 nfab1 𝑥 { 𝑥𝜑 }
5 nfcv 𝑥 𝑉
6 3 4 5 bj-rcleqf ( ( 𝑉𝐴 ) = ( 𝑉 ∩ { 𝑥𝜑 } ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) )
7 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
8 7 bibi2i ( ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) ↔ ( 𝑥𝐴𝜑 ) )
9 8 ralbii ( ∀ 𝑥𝑉 ( 𝑥𝐴𝑥 ∈ { 𝑥𝜑 } ) ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝜑 ) )
10 2 6 9 3bitri ( ( 𝑉𝐴 ) = { 𝑥𝑉𝜑 } ↔ ∀ 𝑥𝑉 ( 𝑥𝐴𝜑 ) )