Metamath Proof Explorer


Theorem bj-reabeq

Description: Relative form of eqabb . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-reabeq VA=xV|φxVxAφ

Proof

Step Hyp Ref Expression
1 dfrab3 xV|φ=Vx|φ
2 1 eqeq2i VA=xV|φVA=Vx|φ
3 nfcv _xA
4 nfab1 _xx|φ
5 nfcv _xV
6 3 4 5 bj-rcleqf VA=Vx|φxVxAxx|φ
7 abid xx|φφ
8 7 bibi2i xAxx|φxAφ
9 8 ralbii xVxAxx|φxVxAφ
10 2 6 9 3bitri VA=xV|φxVxAφ