Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Set theory: elementary operations relative to a universe
bj-rcleqf
Next ⟩
bj-rcleq
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-rcleqf
Description:
Relative version of
cleqf
.
(Contributed by
BJ
, 27-Dec-2023)
Ref
Expression
Hypotheses
bj-rcleqf.a
⊢
Ⅎ
_
x
A
bj-rcleqf.b
⊢
Ⅎ
_
x
B
bj-rcleqf.v
⊢
Ⅎ
_
x
V
Assertion
bj-rcleqf
⊢
V
∩
A
=
V
∩
B
↔
∀
x
∈
V
x
∈
A
↔
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
bj-rcleqf.a
⊢
Ⅎ
_
x
A
2
bj-rcleqf.b
⊢
Ⅎ
_
x
B
3
bj-rcleqf.v
⊢
Ⅎ
_
x
V
4
elin
⊢
x
∈
V
∩
A
↔
x
∈
V
∧
x
∈
A
5
elin
⊢
x
∈
V
∩
B
↔
x
∈
V
∧
x
∈
B
6
4
5
bibi12i
⊢
x
∈
V
∩
A
↔
x
∈
V
∩
B
↔
x
∈
V
∧
x
∈
A
↔
x
∈
V
∧
x
∈
B
7
pm5.32
⊢
x
∈
V
→
x
∈
A
↔
x
∈
B
↔
x
∈
V
∧
x
∈
A
↔
x
∈
V
∧
x
∈
B
8
6
7
bitr4i
⊢
x
∈
V
∩
A
↔
x
∈
V
∩
B
↔
x
∈
V
→
x
∈
A
↔
x
∈
B
9
8
albii
⊢
∀
x
x
∈
V
∩
A
↔
x
∈
V
∩
B
↔
∀
x
x
∈
V
→
x
∈
A
↔
x
∈
B
10
3
1
nfin
⊢
Ⅎ
_
x
V
∩
A
11
3
2
nfin
⊢
Ⅎ
_
x
V
∩
B
12
10
11
cleqf
⊢
V
∩
A
=
V
∩
B
↔
∀
x
x
∈
V
∩
A
↔
x
∈
V
∩
B
13
df-ral
⊢
∀
x
∈
V
x
∈
A
↔
x
∈
B
↔
∀
x
x
∈
V
→
x
∈
A
↔
x
∈
B
14
9
12
13
3bitr4i
⊢
V
∩
A
=
V
∩
B
↔
∀
x
∈
V
x
∈
A
↔
x
∈
B