Metamath Proof Explorer


Theorem bj-rcleqf

Description: Relative version of cleqf . (Contributed by BJ, 27-Dec-2023)

Ref Expression
Hypotheses bj-rcleqf.a _ x A
bj-rcleqf.b _ x B
bj-rcleqf.v _ x V
Assertion bj-rcleqf V A = V B x V x A x B

Proof

Step Hyp Ref Expression
1 bj-rcleqf.a _ x A
2 bj-rcleqf.b _ x B
3 bj-rcleqf.v _ x V
4 elin x V A x V x A
5 elin x V B x V x B
6 4 5 bibi12i x V A x V B x V x A x V x B
7 pm5.32 x V x A x B x V x A x V x B
8 6 7 bitr4i x V A x V B x V x A x B
9 8 albii x x V A x V B x x V x A x B
10 3 1 nfin _ x V A
11 3 2 nfin _ x V B
12 10 11 cleqf V A = V B x x V A x V B
13 df-ral x V x A x B x x V x A x B
14 9 12 13 3bitr4i V A = V B x V x A x B