Metamath Proof Explorer


Theorem bj-sbeqALT

Description: Substitution in an equality (use the more general version bj-sbeq instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion bj-sbeqALT y x A = B y / x A = y / x B

Proof

Step Hyp Ref Expression
1 nfcsb1v _ x y / x A
2 nfcsb1v _ x y / x B
3 1 2 nfeq x y / x A = y / x B
4 csbeq1a x = y A = y / x A
5 csbeq1a x = y B = y / x B
6 4 5 eqeq12d x = y A = B y / x A = y / x B
7 3 6 sbiev y x A = B y / x A = y / x B