Metamath Proof Explorer


Theorem bj-sbievv

Description: Version of sbie with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-sbievv.nfx x ψ
bj-sbievv.nfy y φ
bj-sbievv.is x = y φ ψ
Assertion bj-sbievv y x φ ψ

Proof

Step Hyp Ref Expression
1 bj-sbievv.nfx x ψ
2 bj-sbievv.nfy y φ
3 bj-sbievv.is x = y φ ψ
4 2 sb6f y x φ x x = y φ
5 1 3 equsal x x = y φ ψ
6 4 5 bitri y x φ ψ