Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
First-order logic: miscellaneous
bj-sbievv
Metamath Proof Explorer
Description: Version of sbie with a second nonfreeness hypothesis and shorter
proof. (Contributed by BJ , 18-Jul-2023)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
bj-sbievv.nfx
⊢ Ⅎ x ψ
bj-sbievv.nfy
⊢ Ⅎ y φ
bj-sbievv.is
⊢ x = y → φ ↔ ψ
Assertion
bj-sbievv
⊢ y x φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
bj-sbievv.nfx
⊢ Ⅎ x ψ
2
bj-sbievv.nfy
⊢ Ⅎ y φ
3
bj-sbievv.is
⊢ x = y → φ ↔ ψ
4
2
sb6f
⊢ y x φ ↔ ∀ x x = y → φ
5
1 3
equsal
⊢ ∀ x x = y → φ ↔ ψ
6
4 5
bitri
⊢ y x φ ↔ ψ