Metamath Proof Explorer


Theorem bj-sbievw

Description: Lemma for substitution. Closed form of equsalvw and sbievw . (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion bj-sbievw y x φ ψ y x φ ψ

Proof

Step Hyp Ref Expression
1 sb6 y x φ ψ x x = y φ ψ
2 bj-sblem x x = y φ ψ x x = y φ x x = y ψ
3 sb6 y x φ x x = y φ
4 ax6ev x x = y
5 4 a1bi ψ x x = y ψ
6 2 3 5 3bitr4g x x = y φ ψ y x φ ψ
7 1 6 sylbi y x φ ψ y x φ ψ