Metamath Proof Explorer


Theorem bj-ssbeq

Description: Substitution in an equality, disjoint variables case. Uses only ax-1 through ax-6 . It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq first with a DV condition on x , t , and then in the general case. (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ssbeq t x y = z y = z

Proof

Step Hyp Ref Expression
1 df-sb t x y = z u u = t x x = u y = z
2 19.23v x x = u y = z x x = u y = z
3 ax6ev x x = u
4 pm2.27 x x = u x x = u y = z y = z
5 3 4 ax-mp x x = u y = z y = z
6 ax-1 y = z x x = u y = z
7 5 6 impbii x x = u y = z y = z
8 2 7 bitri x x = u y = z y = z
9 8 imbi2i u = t x x = u y = z u = t y = z
10 9 albii u u = t x x = u y = z u u = t y = z
11 19.23v u u = t y = z u u = t y = z
12 ax6ev u u = t
13 pm2.27 u u = t u u = t y = z y = z
14 12 13 ax-mp u u = t y = z y = z
15 ax-1 y = z u u = t y = z
16 14 15 impbii u u = t y = z y = z
17 11 16 bitri u u = t y = z y = z
18 10 17 bitri u u = t x x = u y = z y = z
19 1 18 bitri t x y = z y = z