Step |
Hyp |
Ref |
Expression |
1 |
|
df-sb |
⊢ ( [ 𝑡 / 𝑥 ] 𝑦 = 𝑧 ↔ ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) ) |
2 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) |
3 |
|
ax6ev |
⊢ ∃ 𝑥 𝑥 = 𝑢 |
4 |
|
pm2.27 |
⊢ ( ∃ 𝑥 𝑥 = 𝑢 → ( ( ∃ 𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( ∃ 𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
6 |
|
ax-1 |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) |
7 |
5 6
|
impbii |
⊢ ( ( ∃ 𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 ) |
8 |
2 7
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 ) |
9 |
8
|
imbi2i |
⊢ ( ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) ↔ ( 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) ↔ ∀ 𝑢 ( 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ) |
11 |
|
19.23v |
⊢ ( ∀ 𝑢 ( 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ) |
12 |
|
ax6ev |
⊢ ∃ 𝑢 𝑢 = 𝑡 |
13 |
|
pm2.27 |
⊢ ( ∃ 𝑢 𝑢 = 𝑡 → ( ( ∃ 𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( ∃ 𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
15 |
|
ax-1 |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ) |
16 |
14 15
|
impbii |
⊢ ( ( ∃ 𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 ) |
17 |
11 16
|
bitri |
⊢ ( ∀ 𝑢 ( 𝑢 = 𝑡 → 𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 ) |
18 |
10 17
|
bitri |
⊢ ( ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢 → 𝑦 = 𝑧 ) ) ↔ 𝑦 = 𝑧 ) |
19 |
1 18
|
bitri |
⊢ ( [ 𝑡 / 𝑥 ] 𝑦 = 𝑧 ↔ 𝑦 = 𝑧 ) |