Metamath Proof Explorer


Theorem bj-ssbeq

Description: Substitution in an equality, disjoint variables case. Uses only ax-1 through ax-6 . It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq first with a DV condition on x , t , and then in the general case. (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ssbeq ( [ 𝑡 / 𝑥 ] 𝑦 = 𝑧𝑦 = 𝑧 )

Proof

Step Hyp Ref Expression
1 df-sb ( [ 𝑡 / 𝑥 ] 𝑦 = 𝑧 ↔ ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ) )
2 19.23v ( ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ↔ ( ∃ 𝑥 𝑥 = 𝑢𝑦 = 𝑧 ) )
3 ax6ev 𝑥 𝑥 = 𝑢
4 pm2.27 ( ∃ 𝑥 𝑥 = 𝑢 → ( ( ∃ 𝑥 𝑥 = 𝑢𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) )
5 3 4 ax-mp ( ( ∃ 𝑥 𝑥 = 𝑢𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
6 ax-1 ( 𝑦 = 𝑧 → ( ∃ 𝑥 𝑥 = 𝑢𝑦 = 𝑧 ) )
7 5 6 impbii ( ( ∃ 𝑥 𝑥 = 𝑢𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 )
8 2 7 bitri ( ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 )
9 8 imbi2i ( ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ) ↔ ( 𝑢 = 𝑡𝑦 = 𝑧 ) )
10 9 albii ( ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ) ↔ ∀ 𝑢 ( 𝑢 = 𝑡𝑦 = 𝑧 ) )
11 19.23v ( ∀ 𝑢 ( 𝑢 = 𝑡𝑦 = 𝑧 ) ↔ ( ∃ 𝑢 𝑢 = 𝑡𝑦 = 𝑧 ) )
12 ax6ev 𝑢 𝑢 = 𝑡
13 pm2.27 ( ∃ 𝑢 𝑢 = 𝑡 → ( ( ∃ 𝑢 𝑢 = 𝑡𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) )
14 12 13 ax-mp ( ( ∃ 𝑢 𝑢 = 𝑡𝑦 = 𝑧 ) → 𝑦 = 𝑧 )
15 ax-1 ( 𝑦 = 𝑧 → ( ∃ 𝑢 𝑢 = 𝑡𝑦 = 𝑧 ) )
16 14 15 impbii ( ( ∃ 𝑢 𝑢 = 𝑡𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 )
17 11 16 bitri ( ∀ 𝑢 ( 𝑢 = 𝑡𝑦 = 𝑧 ) ↔ 𝑦 = 𝑧 )
18 10 17 bitri ( ∀ 𝑢 ( 𝑢 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑢𝑦 = 𝑧 ) ) ↔ 𝑦 = 𝑧 )
19 1 18 bitri ( [ 𝑡 / 𝑥 ] 𝑦 = 𝑧𝑦 = 𝑧 )