| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sb |
|- ( [ t / x ] y = z <-> A. u ( u = t -> A. x ( x = u -> y = z ) ) ) |
| 2 |
|
19.23v |
|- ( A. x ( x = u -> y = z ) <-> ( E. x x = u -> y = z ) ) |
| 3 |
|
ax6ev |
|- E. x x = u |
| 4 |
|
pm2.27 |
|- ( E. x x = u -> ( ( E. x x = u -> y = z ) -> y = z ) ) |
| 5 |
3 4
|
ax-mp |
|- ( ( E. x x = u -> y = z ) -> y = z ) |
| 6 |
|
ax-1 |
|- ( y = z -> ( E. x x = u -> y = z ) ) |
| 7 |
5 6
|
impbii |
|- ( ( E. x x = u -> y = z ) <-> y = z ) |
| 8 |
2 7
|
bitri |
|- ( A. x ( x = u -> y = z ) <-> y = z ) |
| 9 |
8
|
imbi2i |
|- ( ( u = t -> A. x ( x = u -> y = z ) ) <-> ( u = t -> y = z ) ) |
| 10 |
9
|
albii |
|- ( A. u ( u = t -> A. x ( x = u -> y = z ) ) <-> A. u ( u = t -> y = z ) ) |
| 11 |
|
19.23v |
|- ( A. u ( u = t -> y = z ) <-> ( E. u u = t -> y = z ) ) |
| 12 |
|
ax6ev |
|- E. u u = t |
| 13 |
|
pm2.27 |
|- ( E. u u = t -> ( ( E. u u = t -> y = z ) -> y = z ) ) |
| 14 |
12 13
|
ax-mp |
|- ( ( E. u u = t -> y = z ) -> y = z ) |
| 15 |
|
ax-1 |
|- ( y = z -> ( E. u u = t -> y = z ) ) |
| 16 |
14 15
|
impbii |
|- ( ( E. u u = t -> y = z ) <-> y = z ) |
| 17 |
11 16
|
bitri |
|- ( A. u ( u = t -> y = z ) <-> y = z ) |
| 18 |
10 17
|
bitri |
|- ( A. u ( u = t -> A. x ( x = u -> y = z ) ) <-> y = z ) |
| 19 |
1 18
|
bitri |
|- ( [ t / x ] y = z <-> y = z ) |