Metamath Proof Explorer


Theorem bj-ssbeq

Description: Substitution in an equality, disjoint variables case. Uses only ax-1 through ax-6 . It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq first with a DV condition on x , t , and then in the general case. (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ssbeq
|- ( [ t / x ] y = z <-> y = z )

Proof

Step Hyp Ref Expression
1 df-sb
 |-  ( [ t / x ] y = z <-> A. u ( u = t -> A. x ( x = u -> y = z ) ) )
2 19.23v
 |-  ( A. x ( x = u -> y = z ) <-> ( E. x x = u -> y = z ) )
3 ax6ev
 |-  E. x x = u
4 pm2.27
 |-  ( E. x x = u -> ( ( E. x x = u -> y = z ) -> y = z ) )
5 3 4 ax-mp
 |-  ( ( E. x x = u -> y = z ) -> y = z )
6 ax-1
 |-  ( y = z -> ( E. x x = u -> y = z ) )
7 5 6 impbii
 |-  ( ( E. x x = u -> y = z ) <-> y = z )
8 2 7 bitri
 |-  ( A. x ( x = u -> y = z ) <-> y = z )
9 8 imbi2i
 |-  ( ( u = t -> A. x ( x = u -> y = z ) ) <-> ( u = t -> y = z ) )
10 9 albii
 |-  ( A. u ( u = t -> A. x ( x = u -> y = z ) ) <-> A. u ( u = t -> y = z ) )
11 19.23v
 |-  ( A. u ( u = t -> y = z ) <-> ( E. u u = t -> y = z ) )
12 ax6ev
 |-  E. u u = t
13 pm2.27
 |-  ( E. u u = t -> ( ( E. u u = t -> y = z ) -> y = z ) )
14 12 13 ax-mp
 |-  ( ( E. u u = t -> y = z ) -> y = z )
15 ax-1
 |-  ( y = z -> ( E. u u = t -> y = z ) )
16 14 15 impbii
 |-  ( ( E. u u = t -> y = z ) <-> y = z )
17 11 16 bitri
 |-  ( A. u ( u = t -> y = z ) <-> y = z )
18 10 17 bitri
 |-  ( A. u ( u = t -> A. x ( x = u -> y = z ) ) <-> y = z )
19 1 18 bitri
 |-  ( [ t / x ] y = z <-> y = z )