Metamath Proof Explorer


Theorem bj-ssblem1

Description: A lemma for the definiens of df-sb . An instance of sp proved without it. Note: it has a common subproof with sbjust . (Contributed by BJ, 22-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ssblem1
|- ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> ( y = t -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 equequ1
 |-  ( y = z -> ( y = t <-> z = t ) )
2 equequ2
 |-  ( y = z -> ( x = y <-> x = z ) )
3 2 imbi1d
 |-  ( y = z -> ( ( x = y -> ph ) <-> ( x = z -> ph ) ) )
4 3 albidv
 |-  ( y = z -> ( A. x ( x = y -> ph ) <-> A. x ( x = z -> ph ) ) )
5 1 4 imbi12d
 |-  ( y = z -> ( ( y = t -> A. x ( x = y -> ph ) ) <-> ( z = t -> A. x ( x = z -> ph ) ) ) )
6 5 spw
 |-  ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> ( y = t -> A. x ( x = y -> ph ) ) )