Metamath Proof Explorer


Theorem sbjust

Description: Justification theorem for df-sb proved from Tarski's FOL axiom schemes. (Contributed by BJ, 22-Jan-2023)

Ref Expression
Assertion sbjust
|- ( A. y ( y = t -> A. x ( x = y -> ph ) ) <-> A. z ( z = t -> A. x ( x = z -> ph ) ) )

Proof

Step Hyp Ref Expression
1 equequ1
 |-  ( y = z -> ( y = t <-> z = t ) )
2 equequ2
 |-  ( y = z -> ( x = y <-> x = z ) )
3 2 imbi1d
 |-  ( y = z -> ( ( x = y -> ph ) <-> ( x = z -> ph ) ) )
4 3 albidv
 |-  ( y = z -> ( A. x ( x = y -> ph ) <-> A. x ( x = z -> ph ) ) )
5 1 4 imbi12d
 |-  ( y = z -> ( ( y = t -> A. x ( x = y -> ph ) ) <-> ( z = t -> A. x ( x = z -> ph ) ) ) )
6 5 cbvalvw
 |-  ( A. y ( y = t -> A. x ( x = y -> ph ) ) <-> A. z ( z = t -> A. x ( x = z -> ph ) ) )