Metamath Proof Explorer


Theorem bj-tageq

Description: Substitution property for tag . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tageq A = B tag A = tag B

Proof

Step Hyp Ref Expression
1 bj-sngleq A = B sngl A = sngl B
2 1 uneq1d A = B sngl A = sngl B
3 df-bj-tag tag A = sngl A
4 df-bj-tag tag B = sngl B
5 2 3 4 3eqtr4g A = B tag A = tag B