Metamath Proof Explorer


Theorem blpnf

Description: The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blpnf DMetXPXPballD+∞=X

Proof

Step Hyp Ref Expression
1 metxmet DMetXD∞MetX
2 xblpnf D∞MetXPXxPballD+∞xXPDx
3 1 2 sylan DMetXPXxPballD+∞xXPDx
4 metcl DMetXPXxXPDx
5 4 3expia DMetXPXxXPDx
6 5 pm4.71d DMetXPXxXxXPDx
7 3 6 bitr4d DMetXPXxPballD+∞xX
8 7 eqrdv DMetXPXPballD+∞=X