Metamath Proof Explorer


Theorem blssopn

Description: The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion blssopn D∞MetXranballDJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 blbas D∞MetXranballDTopBases
3 bastg ranballDTopBasesranballDtopGenranballD
4 2 3 syl D∞MetXranballDtopGenranballD
5 1 mopnval D∞MetXJ=topGenranballD
6 4 5 sseqtrrd D∞MetXranballDJ