Metamath Proof Explorer


Theorem bnd2d

Description: Deduction form of bnd2 . (Contributed by Emmett Weisz, 19-Jan-2021)

Ref Expression
Hypotheses bnd2d.1 φAV
bnd2d.2 φxAyBψ
Assertion bnd2d φzzBxAyzψ

Proof

Step Hyp Ref Expression
1 bnd2d.1 φAV
2 bnd2d.2 φxAyBψ
3 raleq A=ifAVAxAyBψxifAVAyBψ
4 raleq A=ifAVAxAyzψxifAVAyzψ
5 4 anbi2d A=ifAVAzBxAyzψzBxifAVAyzψ
6 5 exbidv A=ifAVAzzBxAyzψzzBxifAVAyzψ
7 3 6 imbi12d A=ifAVAxAyBψzzBxAyzψxifAVAyBψzzBxifAVAyzψ
8 0ex V
9 8 elimel ifAVAV
10 9 bnd2 xifAVAyBψzzBxifAVAyzψ
11 7 10 dedth AVxAyBψzzBxAyzψ
12 1 2 11 sylc φzzBxAyzψ