Metamath Proof Explorer


Theorem bnj106

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj106.1 ψ i ω suc i n f suc i = y f i pred y A R
bnj106.2 F V
Assertion bnj106 [˙F / f]˙ [˙ 1 𝑜 / n]˙ ψ i ω suc i 1 𝑜 F suc i = y F i pred y A R

Proof

Step Hyp Ref Expression
1 bnj106.1 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj106.2 F V
3 bnj105 1 𝑜 V
4 1 3 bnj92 [˙ 1 𝑜 / n]˙ ψ i ω suc i 1 𝑜 f suc i = y f i pred y A R
5 4 sbcbii [˙F / f]˙ [˙ 1 𝑜 / n]˙ ψ [˙F / f]˙ i ω suc i 1 𝑜 f suc i = y f i pred y A R
6 fveq1 f = F f suc i = F suc i
7 fveq1 f = F f i = F i
8 7 bnj1113 f = F y f i pred y A R = y F i pred y A R
9 6 8 eqeq12d f = F f suc i = y f i pred y A R F suc i = y F i pred y A R
10 9 imbi2d f = F suc i 1 𝑜 f suc i = y f i pred y A R suc i 1 𝑜 F suc i = y F i pred y A R
11 10 ralbidv f = F i ω suc i 1 𝑜 f suc i = y f i pred y A R i ω suc i 1 𝑜 F suc i = y F i pred y A R
12 2 11 sbcie [˙F / f]˙ i ω suc i 1 𝑜 f suc i = y f i pred y A R i ω suc i 1 𝑜 F suc i = y F i pred y A R
13 5 12 bitri [˙F / f]˙ [˙ 1 𝑜 / n]˙ ψ i ω suc i 1 𝑜 F suc i = y F i pred y A R