Metamath Proof Explorer


Theorem bnj92

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj92.1 ψ i ω suc i n f suc i = y f i pred y A R
bnj92.2 Z V
Assertion bnj92 [˙Z / n]˙ ψ i ω suc i Z f suc i = y f i pred y A R

Proof

Step Hyp Ref Expression
1 bnj92.1 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj92.2 Z V
3 1 sbcbii [˙Z / n]˙ ψ [˙Z / n]˙ i ω suc i n f suc i = y f i pred y A R
4 2 bnj538 [˙Z / n]˙ i ω suc i n f suc i = y f i pred y A R i ω [˙Z / n]˙ suc i n f suc i = y f i pred y A R
5 sbcimg Z V [˙Z / n]˙ suc i n f suc i = y f i pred y A R [˙Z / n]˙ suc i n [˙Z / n]˙ f suc i = y f i pred y A R
6 2 5 ax-mp [˙Z / n]˙ suc i n f suc i = y f i pred y A R [˙Z / n]˙ suc i n [˙Z / n]˙ f suc i = y f i pred y A R
7 sbcel2gv Z V [˙Z / n]˙ suc i n suc i Z
8 2 7 ax-mp [˙Z / n]˙ suc i n suc i Z
9 2 bnj525 [˙Z / n]˙ f suc i = y f i pred y A R f suc i = y f i pred y A R
10 8 9 imbi12i [˙Z / n]˙ suc i n [˙Z / n]˙ f suc i = y f i pred y A R suc i Z f suc i = y f i pred y A R
11 6 10 bitri [˙Z / n]˙ suc i n f suc i = y f i pred y A R suc i Z f suc i = y f i pred y A R
12 11 ralbii i ω [˙Z / n]˙ suc i n f suc i = y f i pred y A R i ω suc i Z f suc i = y f i pred y A R
13 3 4 12 3bitri [˙Z / n]˙ ψ i ω suc i Z f suc i = y f i pred y A R