Metamath Proof Explorer


Theorem bnj93

Description: Technical lemma for bnj97 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj93 R FrSe A x A pred x A R V

Proof

Step Hyp Ref Expression
1 df-bnj15 R FrSe A R Fr A R Se A
2 1 simprbi R FrSe A R Se A
3 df-bnj13 R Se A x A pred x A R V
4 2 3 sylib R FrSe A x A pred x A R V
5 4 r19.21bi R FrSe A x A pred x A R V