Metamath Proof Explorer


Theorem bnj1124

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1124.4 θRFrSeAXA
bnj1124.5 τBVTrFoBARpredXARB
Assertion bnj1124 θτtrClXARB

Proof

Step Hyp Ref Expression
1 bnj1124.4 θRFrSeAXA
2 bnj1124.5 τBVTrFoBARpredXARB
3 biid f=predXARf=predXAR
4 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
5 biid nωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predXARiωsucinfsuci=yfipredyAR
6 biid inzfiinzfi
7 eqid ω=ω
8 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
9 biid ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiBff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiB
10 biid jnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiBjnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiB
11 biid [˙j/i]˙f=predXAR[˙j/i]˙f=predXAR
12 biid [˙j/i]˙iωsucinfsuci=yfipredyAR[˙j/i]˙iωsucinfsuci=yfipredyAR
13 biid [˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR[˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR
14 biid [˙j/i]˙θ[˙j/i]˙θ
15 biid [˙j/i]˙τ[˙j/i]˙τ
16 biid [˙j/i]˙inzfi[˙j/i]˙inzfi
17 biid [˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiB[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiB
18 biid jnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiBjnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiB
19 biid injnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiBff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomfinjnjEi[˙j/i]˙ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiBff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomf
20 3 4 5 1 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bnj1030 θτtrClXARB